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Nonstationary flows are amongst the most interesting phenomena in gas dynamics. A 
characteristic example is the oscillatory interaction between a supersonic jet and a flat 
obstacle, which explains the ongoing interest. This is evident from [1-6], which deal 
with a key aspect of oscillations: the forward and feedback channels that maintain the 
oscillations: Some suggest that the feedback mechanism is governed by sound waves propagat- 
ing from the obstacle, which influence the mount of the jet [3], while others assert that 
the feedback is of shockwave type and occurs in the shock layer ahead of the obstacle 
[ i ,  5, 6]. 

External acoustic coupling may affect the frequency response, but we show here that 
it is not the principal effect causing nonstationary flow in the shock layer. 

i. Experimental and Processing Methods. A supersonic wind tunnel was used with a 
cylinder system to supply air and an open working section. Figure!ishows the general 
form of the apparatus and the pneumoelectric coupling to the tube. The coaxial Supersonic 
flows were produced by the nozzle unit 2 attached to the main section 1 of the wind tube. 
The enclosing flow was provided by the annular nozzle, whose generators were provided by 
the cylindrical fitting 6 and the outer surface of the central nozzle body 4 and 5 (the 
shaping is considered below), while the jet was provided by the conical Laval nozzle 5. 
The working body (air having stagnation temperature T o = 290 K) was supplied to the peri- 
pheral nozzle directly from the main vessel, and to the central nozzle from the auxiliary 
vessel 7 via three pipes 8 and the three hollow sections 3. The planar obstacle 9 was a 
cylinder with flat end, diameter d = 28 mm, which was mounted in a holder on a coordinate 
table (Fig. ic), which was fitted with an electric drive providing continuous displacement 
in the longitudinal direction at a velocity of 1 mm/sec. The center of the obstacle bore 
the LKh-611 piezoelectric pressure sensor with membrane working surface of 6 mm. 

This design produced an almost uniform sheathing flow. The central nozzle body was 
shaped from calculations by the characteristic method [7], which dealt with the flow of gas 
from an annular nozZle (Fig. la) having a uniform solid flow at the input (on line AB), which 
was formed by the rectilinear wall BC and the stream line AD. Here AB and AE are the initial 
and final characteristics in the expanding flow, while ED is the characteristic beyond which 
the calculated flow velocity is attained. The shape of the central body was constructed for 
the geometrical parameter A = 0.76 (A = OA/OB < i), but the actual profile AK differs from 
the theoretical one because the generator does not attain the point r = 0. It is necessary 
to interrupt the profile to locate the exit section of the central-jet nozzle. Tests with 
the peripheral.nozzle showed that the pressure P0=/Ps = 14 was attained at the end of the 
central nozzle with a given (monitored) outside pressure in the sheath space Ps and corres- 
ponded almost exactly to the calculated mode of flow from the angular nozzle (deviation from 
the calculated state n~ ~ Pa~/Ps = i, in which Pa~ is the static pressure at the end of the 
peripheral nozzle for M~ = 2.365). The outside diameter of the peripheral nozzle (diameter 
of the sheath flow) was d~ = 120 mm. The central-jet nozzle was conical and had Ma = 2, d a = 
i0 mm, d, = 7.68 mm (da and d~ are the diameters at the outlet and in the critical section), 
while the thickness of the sharp edge at the end was about 0.4 mm, cone semivertex angle 
%a = 5~ 

We measured the total pressures in the peripheral system P0~ and the central one P0 
and synchronized the recording equipment with a data-acquisition suite based on an Iskra 1256 
minicomputer. The units were linked by a common interface. This acquisition system employed 
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combined processing. During the experiment, P0 and P0~ were input through the measurement 
chain constituted by the MD-T potentiometric sensor and were stored in the executive store~ 
while the information on the pressure pulsations at the obstacle (in the surrounding space) 
p(~) passed through the measuring circuits from the piezoelectric LKh-611 sensor (half--inch 
MK-221 capacitor microphone made by RFT, which was 1 m from the end of the nozzle and pointed 
towards the center of the obstacle: Fig. ib, item i0), which worked with the 00 0011 micro- 
phone amplifier (RFT) and 01 021 noise meter (RFT), being then written in analog from to 
the NO 67 tape recorder (frequency range up to 40 kHz) without processing. The shock-wave 
pattern was recorded photographically with an RFK-5 camera (exposure 1/50 sec) working with 
an IAB-451 optical instrument. The measurement instant was identified on writting the data 
to tape by supplying a pulse from the control computer to one of the inputs. This was 
simultaneously the command pulse for the RFK-5. After the run, the P0 and P0~ were read 
out from the memory after conversion on the basis of the previous calibration to the printer 
as a record. The dynamic parameters on the tape were processed with an SK 4-72/2 narrow- 
band spectrum analyzer covering the range 0.05-20 kHz. The spectrograms were recorded with 
an Endim 622.01/1 XY recorder. The passband in the system from the sensor (microphone) 
to the tape recorder was better than 20 kHz. The measurement accuracy for P0, P0~, and 
p(m) was 2-5%. 

The pressures in the central and peripheral chambers were kept constant by means of 
! 

control valves working with accuracy class 0.5 standard manometers (on the pressure plateau) 
in accordance with the working cycle, which involved the following sequence: bringing the 
central jet to working condition, starting up the peripheral nozzle, moving the obstacle, 
and recording the parameters. The interaction was examined with the obstacle continuously 
retreating downstream. 

The parameters used were Ma = 2, P0/Ps = 51, M~ = 2.365, D e = de/d a = 2.8, distance 
from the nozzle to the obstacle H = h/ra = 4.4-12.7 (ra radius at end of jet nozzle), 
X = h/xx = 0.595-1.716 (Xx = 37 mm distance along the axis of the sheath jet from the end of 
the nozzle to the point of regular reflection for the hanging shock wave (Fig. 2)). 

2. Results and Discussion. We first describe the free jet structure because it is 
important in controlling the flow bonditions in the shock layer. Figure 2 shows schlieren 
photographs of the sheathed jet and the jet emerging in the sheath flow for constant Stag- 
nation pressure in the central system P0/Ps = 51. The.discrepancy ns = Po/Ps = 6.52 for the 
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sheathed jet corresponded to irregular reflection of the hanging shock wave 2 (Fig. 2a) 
from the symmetry axis with formation of the Mach disk 3. In the second case (Fig. 2b), 
for P0~/Ps = 14.75and a static pressure in the region of the nozzle edge K (Fig. la) 
Pa=/Ps = 1.07, the sheath flow encountered the flow from the conical nozzle at an angle 
of 13 ~ , and the interaction between the flows gave rise to gas-dynamic discontinuities 
at point K, whose parameters can be calculated from local interference theory on the basis 
of the traditional dynamic compatibility conditions for shock waves [8]. With the given 
initial parameters for the flows, the following effects arose: shock wave 5 in the sheath 
flow and a negative-pressure wave ~ in the jet, with the tangential discontinuity 1 between 
them, which isthe boundary between the peripheral and central flows. The intensities of 
the shock wave Js ~ P~ and the negative-pressure wave Jm = P~ a should provide equal 
static pressures p0 behind the waves on both sides of the tangential discontinuity, i.e., 

4Po  : PJ . (2.1) 

T h e r e  i s  a r e l a t i o n  b e t w e e n  t h e  f l o w  r o t a t i o n  a n g l e s  ~s and ~ d e r i v e d  f rom t h e  c o n d i t i o n  
f o r  c o l l i n e r a r i t y  b e t w e e n  t h e  v e l o c i t y  v e c t o r s  b e h i n d  t h e  s h o c k  f r o n t  and in  t h e  n e g a t i v e -  
p r e s u r e  wave a t  K: 

~ - -  ~ = 13~ ( 2 . 2 )  

The known f o r m s  f o r  ~ , ~  (Y, M, ?) e n a b l e  one  t o  u s e  ( 2 . 1 )  and ( 2 . 2 )  t o  c a l c u l a t e  t h e  c o r -  
r e s p o n d i n g  J5 and  Jm, e . g . ,  J s  = 3 . 5  and Jm = 0 . 5 7 4 :  These  g i v e  t h e  i n c l i n a t i o n s  t o  t h e  
symmetry axis for the shock wave front (o 5 = 40.5 ~ ) and the boundary of jet i (8 = 14.5~ 
Which agree well with the corresponding angles on the photographs. The central jet dis- 
crepancy derived from the static pressure behind shock front 5 (n=p~p0 = j$1 = 1.74), 
correspond to regular reflection of the hanging shock wave 2 from the symmetry axis when the 
jet flows into a sheathed space. This result agrees with [9], where it was observed that 
the central jet has very small Mach disk for M~ > 2 . 
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The conditions for such a shock to arise are related to jet flow nonuniformity and para- 
meters at the boundary. The sheath flow in our case was nonuniform up to edge K, while the 
jet emerged from the conical nozzle in an uncontrolled state. Those factors mean that the 
shock front 5 is curvilinear, as is the boundary of the jet i, and also indicate variable 
static pressure along the boundary. The Mach numbers beyond the shock wave (M~ = 1.42) and 

beyond the negative-pressure wave (M~ = 2.35) alter substantially after the flows had inter- 
acted at the nozzle edge. The flow mixing rate at the boundary is dependent on the velocity 
difference and in turn governs the condition for the shock wave 4 reflected from the symmetry 
axis to pass into the outer flow. One can use solutions on the interaction of a shock wave 
with a tangential discontinuity [8] to analyze this, which shows that the intensity of the 
reflected discontinuity will be slight. This is probably the cause of the periodicity loss 
in the sheath jet that has several times been observed, e.g., in [9]. 

Detailed descriptions have been given [1-3] of the general pattern for a jet interacting 
with an obstacle of restricted size without a sheath flow. For given M a and n, the interac- 
tion modes alter as the end of the nozzle recedes from the obstacle: I) stationary radial flow~ 
2) nonstationary oscillatory state, and 3) a stationary state with unperturbed first branch 
point. If the jet strikes an unbounded obstacle [4], the nonstationary state (called the 
strong instability state) is followed by two others: flow with a central circulation zone and 
a second nonstationary state with weak instability. In the stationary flow state, the central 
shock wave recedes from the obstacle as the nozzle end recedes from it. 

The sheath flow tansforms the flow pattern. This can be seen from the schlieren photo- 
graphs in Fig. 3 (M a = 2, p0/Ps = 51, M~ = 2.365, P0~/Ps = 14.75, n = 1.74) where 1 is the jet 
boundary, 2 the hanging shock wave, 3 the central shock wave, 4 the reflected shock wave, 5 
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the adjoint shock wave, 6 the receding shock wave, and 7 the resultant shock front, while 
parts a-j correspond to the following combinations of distances of the end of the nozzle from 
the obstacle: H = 5/X = 0.676; 6.1/0.824; 6.3/0.851; 6.9/0.932; 7.2/0.973; 7.5/1.014; 8.06/ 
1.089; 8.6/1.162; 9.8/1.324; 10.2/1.378. The shock wave at the central part of the jet re- 
mains qualitatively unchanged (similar to the absence of a sheath flow). The flow retarda- 
tion at the obstacle results in a central shock wave ahead of it, whose distance A from the 
obstacle is related to H for constant M a and n as found above and described in [1-4]. How- 
ever, the expanding jet from the surface of the obstacle itself represents an obstacle to the 
supersonic sheath flow. The flow around it at the periphery results in a receding shock wave, 
while the jet itself is deformed. The wave 5 from the nozzle edge is not altered (its incli- 
nation to the jet axis is unchanged) when the obstacle is present in the flow throughout the 
range in H. The intereference between shock waves 5 and 6 leads to the formation of a single 
gas-dyanamic discontinuity 7 at the edge of the sheath flow. The interaction between the 
central jet and the obstacle thus occurs in a narrow perturbed region bounded by the shock 
waves 5-7 and the surface of the obstacle. The above shock wave pattern corresponds to the 
stationary state of flow around the obstacle (subsequently termed the radial flow mode), which 
is characterized by a stationary shock wave pattern and the absence of pressure oscillations 
at the obstacle. 

In some positions of the obstacle relative to the nozzle (0.973 < X < 1.378), the radial 
mode may be disrupted. An oscillatory type of interaction is set up ~Fig. 3 e-i), which is 
characterized by oscillations in the shock wave pattern and the pressure at the obstacle p(~). 
The nonstationary state arises, as in the absence of a sheath flow [2, 4] when the obstacle 
attains the point x x from below: X < i. However, one can establish the presence of the oscil- 
lations only from a careful comparison of the schlieren photographs with spectral measurements 
on the pressure pulsation at the obstacle and in the surrounding space (Fig. 4). The type of 
interaction is governed only by the position of the obstacle relative to the nozzle for fixed 
jet sheath flow parameters, so we consider the sequence of flow states as the obstacle recedes 
downstream. 

Figure 4 shows the pressure pulsations spectrum for the center of the obstacle (solid 
lines), the acoustic pressure in the surrounding space (dashed lines), and the corresponding 
pressure waveform (b). The coordinates in the spectrograms are the relative level AL in the 
pressure pulsation in dB (ordinate) and the frequency f in kHz (abscissa). Parts i-i0 of 
Fig. 4 correspond to a-j in Fig. 3 (baffle receding from i to i0). 

The Topler photographs, spectrograms, and pressure measurements show that with radial 
flow (curves 2 in Fig. 3b and Fig. 4 a and b) the shock-wave pattern in the jet ahead of the 
obstacle is stable with a supersonic sheath flow, while the pressure-fluctuation spectra at 
the obstacle at the stagnation point and the acoustic pressure in the surrounding space are 
analogous to the spectrum for the continuous noise in a supersonic sheath jet (Fig. 2b). The 
pressure fluctuations at the obstacle and the acoustic pressure variations in the surrounding 
space (Fig. 4b) are of random type. That type of interaction persists tofX <0,973 (4~4~-H<7.2). 

Any further increase in H perturbs the central shock wave ahead of the obstacle (with 
divergence as in Fig. 3d and e). A discrete component appears in the pressure-pulsation 
spectrum at the obstacle (basic frequency fr = 5.4 or 5.3 on curves 4 and 5 in Fig. 4a), which 
exceeds slightly (by 5-7 dB) the level of the continuous noise from the jet. The pressure oscilla- 
tions at the stagnation point are not completely deterministic (Fig. 4b), but there is a high 
proportion of low-frequency components in the spectrum. There is no discrete component in the 
pulsation spectrum for the acoustic pressure, and the oscillations are random (curves 4 and 5). 

Further recession is accompanied by disruption of the shock pattern. The central wave 
ahead of the obstacle becomes diffuse (Fig. 3f-i), and developed oscillations occur. The 
oscillations in the central wave have high amplitude and comparatively low frequency. The 
discrete component in the pressure pulsation spectrum at the obstacle increases as H increases, 
and the maximum excess over the continuum level is 30-40 dB. The pressure oscillations at the 
stagnation point are deterministic and sinusoidal (curves 6-9, Fig. 4b). As H increases from 
7.2 to 9.8, fr decreases from 5.3 to 3.4 kHz. The acoustic-pressure spectra in the surround- 

ing space still have no discrete component. The spectrograms are identical with those with 
the noise from a free sheath jet, while the acoustic pressure oscillations are random, as in 
the absence of coherent oscillations (curves 1-3), i.e., in the self-oscillation mode, the 
perturbations do not penetrate the supersonic sheath flow from the obstacle into the surround- 
ing spaceiand do not attain the edges of the nozzle, but instead are transported to downstream. 
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This regularity is very important (is a key feature) as regards the mechanism for nonstation- 
ary flow around the obstacle, as will become clear from the subsequent discussion. With de- 
veloped oscillations, there is slight fuzziness in the closing shock fronts 6 and 7 (Fig. 3h 
and i, where they are somewhat diffuse in the photographs). However, the angles of inclina- 
tion of them and of the shock wave 5 to the flow axis are almost as in radial flow (stationa- 
ary). Beyond X > 1.054 (H > 7.8) the high-amplitude fundamental in the pressure is accompa- 
nied by oscillat~ons of smaller amplitude at medium and high frequencies. The spectra con- 
tain not only the basic component (the first) but also several other discrete ones, which are 
much lower in level (e.g., curve 9 in Fig. 4 for H = 9.8: fr = 3.4, f~ = 6.7, f3 = i0.I, 
etc.). That type of interaction (oscillatory) occurs with 0.973 < X < 1.378 (7.2 < H < 10.2). 
Plots for the nonstationary state in the [I, 2] coordinates in the absence of the sheath flow 
show that if we take n = 1.74 for the jet, the area is that of self-oscillation. 

Larger H (X > 1.365) result in a step to a stationary interaction. The pattern (Fig. 3j) 
is stable and corresponds to the positions of the shock waves in the first mode for the free 
sheath jet (Fig. 2b), while an additional shock arises ahead of the obstacle, which passes 
continuously into shock front 6. The pressure pulsation spectra for the obstacle and the 
surrounding space contain no discrete components, and the oscillations themselves are random 
(Fig. 4, curves i0). The pressure spectra are similar to the noise spectrum for the free 
sheath jet (Fig. 2b). That type of interaction occurs for 1.378 ! X < 1.716 (10.2 < H ! 12.7). 
When the obstacle moves towards the nozzle (H varying from 12.7 to 4.4), one gets the same 
set of modes but in the opposite sequence: a state with unperturbed first mode, oscillations, 
and radial flow. However, there is hysteresis with respect to H, since the end of the oscil- 
lations (start for motion away from the nozzle) occurred at H somewhat less than that given 
above. 

The parameters in the system represented by the central wave and the obstacle affect the 
obstacle, namely as H increases within the oscillation range, there is a reduction in fr, and 
the same effect is produced by increasing n and M a [i, 2, 4]. There are several published ap- 
proaches (which do not differ greatly) [i, 2] to choosing the universal similarity parameters 
for the frequency characteristics. For example, a series of Sha M~a = f(H, D e ) universal 
curves has been suggested for the dimensionless frequency (Sha = frda/Ua is the Strukhal 
number, which is calculated from the gas speed at the end of the nozzle U a) [i]. However~ 
each n then corresponds to a distinct part of the curve. In [2], fr was derived from a frda =- 
f(A, r a) approximation in which A is the distance around which the central wave oscillates 
ahead of the obstacle (the mean position of what wave, which can [I, 2] be determined as 
though the oscillations were absent). That approximation can be transformed if one introdu- 
ces the speed of sound a 0 in the braked flow. Then Sh 0 = frda/a0 =:f(A/da) , which incorpora- 
tes the effects of the obstacle size and other factors (via A) and which is more general than 
for example the [i] formula. However, it also does not adequately incorporate the geometry 
(particularly the transverse dimensions) of the region in the oscillating wave. One expects 
that as the transverse dimensions of the jet are proportional to n~, introducing 
as a measure of the diameter of this region (a suggestion due to Favorskii) will enable one 
not only to reduce the spread in the measured points around some average curve but also to 
derive a universal relationship corresponding to the physical model. 

A similar analysis can be applied to nonstationary state for a bounded obstacle in order 
to extend the existing results (with an accuracy of about i0%) by means of a straight line 
(Fig. 5) 

a0 A 

which is a linear function of the oscillation wavelength A = a0/f r = a0t (t is the period) 
and of the geometrical parameters A and d~Vn: aot -~ 3.6A + 1.3da~r~. 

Figure 5 employs our data with an without the sheath flow together with the [i, 2, 4] 
results for the absence of a sheath flow. Parts 1-15 correspond to the following parameter 
combinations: 1-5 (M a = 2; n s = 2.67-6.52; D e = 2.8; d a = i0 mm without sheath flow), 6 (2; 
4.06; 2.15; 20 [4]), 7 (2; 3; i; 30 [i]), 8-10 (1.5; 3-16.5; 2.5; 20 [2]), Ii, 12 (I; 4-13.5; 
2.5; 20 [2]), 13, 14 (1.5; 2.2-5.2; 1.5; 40 [2]) and 15 (2; 1.74; 2.8; I0 sheath flow), while 
the line is by calculation from (2.3). Here A was taken either from direct measurements or 
was determined from the [2, 4] formulas. 
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These measurements show that oscillations arise when there cannot be feedback from 
acoustic waves propagating from the surrounding space to the edge of the nozzle. The causes 
of the nonstationary state and the mechanism that maintains it are related to processes in 
the shock layer ahead of the obstacle. This is particularly so for the shock-wave structures 
formed by interference between gas-dynamic discontinuities arising ahead of the obstacle when 
the jet is braked and caused to diverge, which interact with discontinuities in the jet and 
the sheath flow. In particular, the triple shock-wave configuration arising from the inter- 
action of the central wave with the hanging shock wave leads to a substantially nonuniform 
entropy distribution in the central and periphera i parts of the shock layer. Calculations 
show that this nonuniformity becomes more marked as the triple configuration recedes from 
the exit nozzle section. At the same time, the gas flow in the high velocity peripheral 
stream increases, as does the inclination to the baffle in the tangential discontinuity aris- 
ing from the triple point. That situation tends to shut off the gas passing through the cen- 
tral shock, an effect that is accentuated by the sheath flow, which alters the conditions for 
the jet spread over the obstacle. The central flow shut off by the low-entropy peripheral one 
results in pertubations propagating from the obstacle to the central shock wave through the 
central flow (feedback channel) and from the shock waves to the obstacle (forward channel) 
[6]. The [5] shock-wave scheme, which is qualitatively confirmed by numerical calculations 
[6], can also occurwith a supersonic sheath flow. 
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